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A semi-direct method for calculating ° ows
with viscous{inviscid interaction

By Sarkis H. Bo sy a nd Anatoly I. Ruban

Department of Mathematics, University of Manchester,
Oxford Road, Manchester M13 9PL, UK

A new `semi-direct’ method for solving viscous{inviscid interaction problems for
high-Reynolds-number separated ®ows is developed. Both supersonic and subsonic
®ow separation may be studied using this technique. The method is based upon the
vorticity and streamfunction formulation. It is fully implicit with respect to the vor-
ticity equation and `interaction law’, which describes the mutual interdependence of
the viscous layer near the body surface and the rest of the ®ow. The main idea of this
approach consists of taking advantage of the particular structure of the governing
equations, which allows the entire ®ow ­ eld to be solved simultaneously by using
the Thomas matrix technique. The method had better numerical stability character-
istics than most of the traditional techniques and was also faster than many other
techniques developed before.

In this paper the method is used for solving the classical problem of the boundary-
layer separation in compression ramp ®ow. Supersonic and subsonic versions of the
problem have been studied. In both cases the semi-direct method allows calculation
of ®ow regimes with extended separation regions corresponding to large ramp angles
that could not be analysed using other methods.

Keywords: separation; high Reynolds number; boundary layer;
¯nite-di® erence method; direct solver; compression ramp

1. Introduction

Despite the e¬orts of many scientists, numerical techniques to solve the viscous{
inviscid interaction problem remain slow and often exhibit divergence for solutions
with large separation regions.z In an attempt to improve this situation a new tech-
nique is proposed, which can be called the semi-direct method. It was found that
this method is much easier to implement than the direct method of Korolev (1991);
at the same time it appears to be almost as stable as the direct method. The main
idea of this approach consists of taking advantage of the particular structure of the
viscous{inviscid interaction equations, which allows us to simultaneously solve for
the entire ®ow ­ eld, both inside and outside the boundary layer, using the Thomas
matrix technique. The method is fully implicit with respect to the shear stress and
the interaction law; for this reason it proved to be more stable compared with the

y Present address: Department of Civil and Construction Engineering, UMIST, PO Box 88, Man-
chester M60 1QD, UK.

z For a recent review of the numerical methods in the theory of viscous{inviscid interaction, see ch. 7
in Sychev et al . (1998).
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Figure 1. The triple-deck structure.

traditional relaxation methods. In this paper the semi-direct method is used to solve
the classical triple-deck problem of boundary-layer separation in compression ramp
®ow. Both supersonic and subsonic external ®ow regimes will be studied.

Let us consider two-dimensional ®ow past a compression ramp constructed of two
®at plates AO and OB, as shown in ­ gure 1. Denote by U 1 , » 1 , · 1 and p 1 the
velocity, density, viscosity and pressure in the unperturbed freestream ®ow, respec-
tively. The distance from the leading edge A to the corner point O is denoted by L.
The plate AO is assumed to be aligned with the freestream and the angle between
the plates AO and OB is denoted by ³ .

The Reynolds and Mach numbers are de­ ned by

Re =
» 1 U 1 L

· 1
; M 1 = U 1

® p 1

» 1

¡1=2

:

Here, ® is the ratio of speci­ c heats, which is assumed to be constant in this investi-
gation. The Reynolds number is supposed to be large, while the Mach number is an
order-one quantity. Let x ¤ and y ¤ be the dimensional coordinates along and normal
to the plate AO measured from the corner point O, as shown in ­ gure 1; u ¤ , v ¤ being
the corresponding velocity components and p ¤ the pressure.

It is known that a triple-deck structure forms around the corner point O with
a characteristic length-scale of each deck indicated in ­ gure 1. To introduce the
equations governing the ®ow in the lower deck, the following scaled variables should
be used (see, for example, Stewartson 1970):

x¤ =
L

Re3=8 ·
1=4
0 »

1=2
0 ­ 3=4a5=4

x; y ¤ =
L·

1=4
0

Re5=8a3=4 »
1=2
0 ­ 1=4

(y + f(x));

u¤ =
a1=4 ·

1=4
0 U 1

»
1=2
0 ­ 1=4Re1=8

u; v ¤ =
a3=4 ·

3=4
0 ­ 1=4U 1

»
1=2
0 Re3=8

v + u
df

dx
;

p¤ = p1 +
a1=2 ·

1=2
0 » 1 U2

1

­ 1=2 »
1=2
0 Re1=4

p; ³ = a1=2 · 1=2
0 ­ 1=2Re¡1=4 ¬ :

(1.1)
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The semi-direct method 3065

In addition to the normal scaling of variables characteristic of the method of matched
asymptotic expansions, the relations in (1.1) include the Prandtl transposition, which
e¬ectively introduces a new curvilinear coordinate system with x measured along the
body contour and y in the normal direction. The body contour is de­ ned by y = f(x);
the non-dimensional density, viscosity and skin friction on the wall directly ahead
of the triple-deck region being denoted by » 0, · 0 and a, respectively. We also use
­ = jM 2

1 ¡ 1j1=2, and we suppose that the scaled ramp angle ¬ is an order-one
constant, so that the physical ramp angle ³ is small for large Reynolds numbers. For
the compression ramp body shape

f(x) = ¬ xH(x); H(x) =
0 if x < 0;

1 if x > 0:

Substituting (1.1) into the Navier{Stokes equations and matching with the sur-
rounding regions, the following interaction problem is obtained. The longitudinal
momentum and continuity equations are written as

u
@u

@x
+ v

@u

@y
= ¡ dp

dx
+

@2u

@y2
; (1.2 a)

@u

@x
+

@v

@y
= 0: (1.2 b)

The no-slip conditions, the matching conditions with the solution in the middle deck
and in the boundary layer upstream of the interaction region are written, respectively,
as

u = v = 0 at y = 0; (1.3 a)

u ! y + A(x) + as y ! 1; (1.3 b)

u ! y as x ! ¡ 1: (1.3 c)

Here, A(x) is the displacement function, which has to be found as a part of the
solution to the interaction problem.

To close the interaction problem, an interaction law is needed. It can be formu-
lated based on the ®ow analysis in the upper deck of the triple-deck structure. For
supersonic ®ow this is given by Ackeret’s formula

p = ¡ dA

dx
+

df

dx
; (1.4)

while for subsonic ®ow the interaction law is represented by Hilbert’s integral of the
thin aerofoil theory:

p = ¡ 1

º

1

¡ 1

A0(s) ¡ f 0(s)

s ¡ x
ds: (1.5)

To simplify the calculations, in this study f(x) is taken as a continuously di¬eren-
tiable function:

f(x) = 1
2
¬ [x + (x2 + r2)1=2]: (1.6)

Here, r is a smoothing parameter that slightly rounds the compression corner; it was
typically taken to be r = 0:5.
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2. Formulations

The problem is reformulated in terms of the shear stress ½ = @u=@y. For this purpose
the momentum equation (1.2 a) is di¬erentiated with respect to y, leading to

u
@½

@x
+ v

@½

@y
=

@2 ½

@y2
: (2.1)

The velocity components u and v can be written in terms of the streamfunction Á
as

u =
@Á

@y
; v = ¡ @Á

@x
; (2.2)

the shear stress being related to Á by

½ =
@2Á

@y2
: (2.3)

To integrate this equation, the no-slip boundary conditions have to be used

Á =
@Á

@y
= 0 at y = 0: (2.4)

Two of the boundary conditions for equation (2.1) follow from (1.3 c) and (1.3 b),
respectively:

½ ! 1 as x ! ¡ 1; (2.5 a)

½ ! 1 as y ! +1: (2.5 b)

The third boundary condition may be derived easily by putting y = 0 in the momen-
tum equation (1.2 a):

@½

@y y = 0

=
dp

dx
: (2.6)

It follows from (1.3 b) that the displacement function A(x) may be written as

A(x) = lim
y ! 1

(u ¡ y) = lim
y ! 1

y

0

( ½ ¡ 1) dy: (2.7)

When the supersonic version of the problem is considered, the interaction law is
represented by the Ackeret formula. Combining (1.4) with (2.7) and (2.6) leads to

@½

@y
y = 0

= ¡ @2

@x2

1

0

( ½ ¡ 1) dy +
d2f

dx2
: (2.8)

Due to the e¬ect of upstream in®uence through the boundary layer in the interaction
region, one more boundary condition at a downstream location should be formulated.
In this study we will suppose that, as x ! +1, the ®ow returns to its unperturbed
form. Taking this into account we will write

½ ! 1 as x ! +1: (2.9)
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In the subsonic case, the only change that has to be made in the above formulation
concerns the interaction boundary condition (2.8). Instead of the Ackeret formula
(1.4), the Hilbert integral (1.5) should be used. This integral has a singularity at
s = x and was evaluated in our calculations as follows.y At each grid point xi

1

¡ 1

A0(s)

s ¡ x
ds º

xI

x1

A0(s)

s ¡ xi
ds =

I¡1

j = 1

xj+1

xj

A0(s)

s ¡ xi
ds;

where I is the number of grid points along the x-axis. For each mesh interval exclud-
ing the two intervals surrounding s = xi we can calculate the integral

Ki;j =
xj+1

xj

A0(s)

s ¡ xi

ds;

using the Taylor expansion for the derivative of the displacement function

@A

@s
= A0(xj + 1) + A00(xj + 1)(s ¡ xj + 1) + ; for 2 6 j 6 i ¡ 2;

@A

@s
= A0(xj) + A00(xj)(s ¡ xj) + ; for i + 1 6 j 6 I ¡ 2:

This gives

Ki;j =
A0(xj + 1) ln

xi ¡ xj + 1

xi ¡ xj
if j 6 i ¡ 2;

A0(xj) ln
xj + 1 ¡ xi

xj ¡ xi
if j > i + 1:

The second-order approximation to the integral over the interval [x ¡ ¢x; x + ¢x] is
easily shown to be 2¢xA00(x). Therefore, equation (2.6) may be written as

@½

@y y = 0

= ¡ 2¢x

º
A000(x) ¡ 1

º

d

dx
G(x) +

1

º

1

¡ 1

f 00(s)

s ¡ x
ds; (2.10)

where

G(xi) =

i¡2

j = 2

Ki;j +

I¡2

j = i+ 1

Ki;j : (2.11)

3. Numerical method for supersonic ° ow

For numerical solutions of equations (2.1){(2.9) the following mesh is introducedz

(xi; yj);
i = 1; : : : ; I;

j = 1; : : : ; J;

where ¢x and ¢y are the mesh spaces in the x- and y-directions, respectively. Denot-
ing the values of ½ at the node points by ½ i;j and using the boundary conditions (2.9)

y We are grateful to V. B. Zametaev for suggesting this approach to us.
z More precisely, the calculations were performed in suitably stretched coordinates similar to those

in Cassel et al . (1995).
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and (2.5), the following values of ½ on the boundary of the computational domain
are to be prescribed

½ 1;j = 1; for j = 1; : : : ; J; (3.1 a)

½ I;j = 1; for j = 1; : : : ; J; (3.1 b)

½ i;J = 1; for i = 1; : : : ; I: (3.1 c)

The values ½ i;j in the interior points, including those on the wall, are unknown and
should be found as a result of computations. For this purpose the Thomas matrix
technique will be used. Instead of dealing with individual scalar quantities ½ i;j , the
following vectors are considered

Ti =

½ i;1

½ i;2

...
½ i;J¡1

; for i = 2; : : : ; I ¡ 1:

These vectors are composed of unknown values of the shear stress along the mesh lines
xi. Equation (2.1), being written in ­ nite-di¬erence form, relates unknown values of
½ on each mesh line xi with those on neighbouring lines xi¡1 and xi+ 1 only. This
means that the equations relating vectors Ti may be written in the form

A
iTi¡1 + B

iTi + C
iTi+ 1 = Di; for i = 2; : : : ; I ¡ 1: (3.2)

Here, A
i,

B
i and C

i are (J ¡ 1) £ (J ¡ 1) matrices and Di is a vector of size (J ¡ 1).
The following reduction formula can be applied to solve the set of equations (3.2):

Ti = R
iTi¡1 + Qi; (3.3)

where R
i is a (J ¡ 1) £ (J ¡ 1) matrix and Qi is a vector of size (J ¡ 1). Using (3.3)

one can reduce (3.2) to the form

Ti = ¡ (Bi + C
i
R

i+ 1)¡1A
iTi¡1 ¡ (Bi + C

i
R

i + 1)¡1(CiQi+ 1 ¡ Di);

from which it follows that
R

i = ¡ (Bi + C
i
R

i+ 1)¡1A
i; (3.4 a)

Qi = ¡ (Bi + C
i
R

i+ 1)¡1(CiQi+ 1 ¡ Di): (3.4 b)

Now the right-hand side boundary condition (3.1 b) implies that TI is a unit vector.
Choosing i = I in (3.3) we see that this condition is satis­ ed independently of TI¡1

provided that
R

I = 0; QI = 1: (3.5)

In our calculations the matrices A
i,

B
i,

C
i and vectors Di were composed in the

following way. At each internal point of the computational grid, the ­ nite-di¬erence
approximation of the momentum equation (2.1) was written in the form

u ¤
i;j

½ i;j ¡ ½ i¡1;j

¢x
if u ¤

i;j > 0

½ i + 1;j ¡ ½ i;j

¢x
if u ¤

i;j < 0
+ v ¤

i;j

( ½ i;j + 1 ¡ ½ i;j¡1)

2¢y

=
½ i;j + 1 ¡ 2½ i;j + ½ i;j¡1

(¢y)2
: (3.6)
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Asterisks in u ¤
i;j and v ¤

i;j are used here to indicate that the velocity components in
(2.1) are evaluated at the previous iteration.

For j = 1 and all i = 2; : : : ; I ¡ 1, the ­ nite-di¬erence version of the interaction
law (2.8) is used

( ½ i;2 ¡ ½ i;1)

¢y
= ¡ ¢y

2(¢x)2

J

j = 2

( ½ i¡1;j + ½ i¡1;j¡1) +
¢y

(¢x)2

J

j = 2

(½ i;j + ½ i;j¡1)

¡ ¢y

2(¢x)2

J

j = 2

( ½ i+ 1;j + ½ i + 1;j¡1) +
d2f

dx2
: (3.7)

According to (3.6) and (3.7), matrix coe¯ cients A
i and C

i in (3.2) have non-
zero elements along the main diagonal produced by the momentum equation (3.6)
and along the ­ rst line produced by the interaction law (3.7). The second matrix
coe¯ cient B

i in (3.2) also has non-zero elements along the ­ rst line coming from the
interaction law and along three diagonals, the main diagonal and the two diagonals
adjacent to the main diagonal, these elements all come from the momentum equation.
The vector Di on the right-hand side of (3.2) has only two non-zero elements, the ­ rst
one coming from the interaction law and the last one coming from the momentum
equation.

Using the recurrence relations (3.4) and `initial conditions’ (3.5) one can calculate
the Thomas matrices R

i and vectors Qi. Then the ½ -­ eld may be updated using
equation (3.3) and the initial condition (3.1 a). With known ½ , new u, Á and v are
computed using (2.3), (2.2), and the procedure to calculate the ½ -­ eld as described
above may be repeated.

4. Numerical method for subsonic ° ow

When calculating the subsonic problem it is necessary to use a four-point ­ nite-
di¬erence formula to incorporate the third-order derivative A000 in the interaction
law (2.10):

A000
i =

¡ Ai¡2 + 3Ai¡1 ¡ 3Ai + Ai + 1

(¢x)3
: (4.1)

On account of this equation, (3.2) will now take the form

A
iTi¡2 + B

iTi¡1 + C
iTi + D

iTi+ 1 = Ei; for i = 3; : : : ; I ¡ 1; (4.2)

with A
i,

B
i,

C
i and D

i being (J ¡ 1)£ (J ¡ 1) matrices and Ei a vector of size (J ¡ 1).
The boundary conditions (3.1) still hold, but to solve (4.2) these should be sup-

plemented with

½ 2;j = 1; for j = 1; : : : ; J: (4.3)

Applying the Thomas reduction formula

Ti = R
iTi+ 1 + Qi; for i = 3; : : : ; I ¡ 1 (4.4)
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to the matrix equation (4.2) yields the following recurrence formulae for R
i and Qi:

R
i = (¡ A

i
R

i¡2
R

i¡1 ¡ B
i
R

i¡1 ¡ C
i)

¡1D
i; (4.5)

Qi = (¡ A
i
R

i¡2
R

i¡1 ¡ B
i
R

i¡1 ¡ C
i)

¡1(Ai
R

i¡2Qi¡1 + A
iQi¡2 + B

iQi¡1 ¡ Ei):
(4.6)

To use (4.5) and (4.6), initial conditions on the ­ rst two mesh lines should be known.
In accordance with (3.1 a) and (4.3) both T1 and T2 are unit vectors. Consequently,
R

1 = R
2 = 0 and Q1 = Q2 = 1.

The matrices A
i,

B
i,

C
i,

D
i and vector Ei are set up using the following ­ nite-

di¬erence version of the momentum equation (2.1)

u ¤
i;j

3½ i;j ¡ 4½ i¡1;j + ½ i¡2;j

2¢x
if u ¤

i;j > 0

½ i+ 1;j ¡ ½ i;j

¢x
if u ¤

i;j < 0
+ v ¤

i;j

( ½ i;j + 1 ¡ ½ i;j¡1)

2¢y

=
½ i;j + 1 ¡ 2 ½ i;j + ½ i;j¡1

(¢y)2
; (4.7)

and interaction law (2.10)

( ½ i;2 ¡ ½ i;1)

¢y
= ¡ 1

º
2¢x(A000)i +

G(xi¡1) ¡ G(xi+ 1)

2¢x
¡ F (x)jx = xi

; (4.8)

where formula (4.1) is used for A000
i and G(x) is de­ ned by (2.11).

Similar to the supersonic case, the matrix coe¯ cients A
i,

B
i and D

i in equa-
tion (4.2) have non-zero elements along the ­ rst line and main diagonal, while in C

i

the ­ rst line and the three main diagonals are non-zero. The former is produced by
the interaction law (4.8), while the latter comes from the momentum equation (4.7).

The iterations for the subsonic ®ow were performed in the same way as those for
the supersonic viscous{inviscid interaction.

5. Calculation results and conclusions

Computational results for the supersonic problem are presented in ­ gure 2. The
initial conditions at the start of the iteration process were taken to be ½ = 1:0,
u = y and v = 0 throughout the computational domain. The calculations were
performed with a grid of 200 points in the x-direction and 100 points in the y-
direction using the transformed coordinates similar to those in Cassel et al . (1995).
The formation of the separation region in the supersonic ®ow and the start of the
development of the `re-attachment peak’ with growing compression ramp angle ¬
may be observed in ­ gure 2a. In ­ gure 2b, the `plateau’ formation in the pressure
distribution, characteristic of separated ®ows, is clearly seen. From ­ gure 2a it can
be seen that separation starts at a critical ramp angle ¬ s º 1:62, which is slightly
higher than the value ¬ s º 1:57 found by Rizzetta et al . (1978) and almost equal to
that in Cassel et al . (1995).

The skin friction and the pressure plots for larger values of ¬ are shown in parts c
and d of ­ gure 2. Figure 2c reveals the formation of a secondary separation (i.e. the
appearance of a reverse-®ow region within the separation region). Oscillations in the
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Figure 2. Skin friction, pressure distribution and streamlines for compression ramp ° ow with
supersonic external ° ow. (a) Skin friction for small angles with supersonic external ° ow. (b) Pres-
sure distribution for small angles with supersonic external ° ow. (c) Skin friction for larger angles
with supersonic external ° ow. (d) Pressure distribution for larger angles with supersonic exter-
nal ° ow. (e) Streamlines for angle ¬ = 3:5, ¢ Á = 1:0 outside the zero line and ¢ Á = 0:3 inside.
(f) Skin friction distribution for supersonic ° ow across a compression ramp at angle ¬ = 3:5,
plotted for several grids (Nx ; Ny ).

skin friction distribution were observed, for ¬ = 8:0. These remain for di¬erent mesh
sizes but change slightly in nature with a decrease in ¢x; the solution being well
converged to a required tolerance.

Figure 2e shows the streamlines for the ramp angle ¬ = 3:5. The line marked
with ¤ is the dividing streamline where Á = 0, the streamlines above and below
this line are equally spaced with ¢Á indicated in the caption. In ­ gure 2f the skin
friction distribution along the compression ramp surface at ¬ = 3:5 is plotted for
several grids to demonstrate independence of the calculation results. The number
of iterations needed to calculate the ®ow at ramp angle ¬ = 3:5 is about 350, this
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Figure 3. Skin friction, pressure distribution and streamlines for compression ramp ° ow with
subsonic external ° ow. (a) Skin friction for small angles with subsonic external ° ow. (b) Pressure
distribution for small angles with subsonic external ° ow. (c) Skin friction for larger angles with
subsonic external ° ow. (d) Pressure distribution for larger angles with subsonic external ° ow.
(e) Streamlines for angle ¬ = 4:0, ¢ Á = 1:0 outside the zero line and ¢ Á = 0:15 inside. (f ) Skin
friction distribution for subsonic ° ow across a compression ramp at angle ¬ = 3:5, plotted for
several grids (Nx ; Ny ), (¢ x; ¢ y).

is signi­ cantly less than that needed when using the relaxation method by Ruban
(1978).

Calculation results for subsonic compression ramp separation are shown in ­ gure 3.
The skin friction ½ w and pressure p are plotted against x in parts a and b of ­ gure 3,
respectively, for values of the ramp angle ¬ up to 3:0. Due to the elliptic nature of
the equations governing the ®uid motion outside the boundary layer, the upstream
in®uence in the subsonic ®ow proves to be more pronounced than in the supersonic
®ow. It can be seen from ­ gure 3a that the separation in the subsonic ®ow starts
later; the critical ramp angle may be estimated as being ¬ s º 2:31. This is quite
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close to the value predicted by Korolev (1991), who performed his calculations for
a similarly rounded compression ramp shape. Earlier calculations by Ruban (1976)
were performed for a sharp compression ramp, and he reported that ¬ s º 2:0. The
di¬erence may be attributed to the change of the body shape. Smith & Merkin (1982)
obtained ¬ s º 2:51 for the sharp compression ramp.

The skin friction and the pressure plots for larger values of ¬ are shown in parts c
and d of ­ gure 3. Korolev (1991) was able to continue his calculations for subsonic
compression ramp ®ow for ramp angles up to ¬ = 7:0. However, he used only 61
mesh points in the x-direction, whereas our calculations indicate that at least 200
points should be used for the calculation results to be independent of the mesh size.

Figure 3e shows the streamlines for ramp angle ¬ = 4:0; the development of
the recirculation region is clearly visible in this plot. In ­ gure 3f the skin friction
along the compression ramp surface at angle ¬ = 3:5 is plotted for several grids
to demonstrate independence of the solutions obtained. The number of iterations
needed to calculate the compression ramp ®ow at angle ¬ = 3:5 for subsonic ®ow is
about 100.

In conclusion, a new numerical method to calculate two-dimensional viscous{
inviscid interaction problems has been proposed. It is fully implicit with respect
to the shear stress ½ , which signi­ cantly improves the stability characteristics of the
method, allowing us to perform the calculations with a smaller number of iterations
and, more importantly, for larger values of ¬ than was possible with conventional
relaxation methods.
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